RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT

Session principale 2023

Épreuve : Mathématiques

Section: Sciences de l'informatique

Durée: 3h

Coefficient de l'épreuve: 3

N° d'inscription

Le sujet comporte 4 pages. (La page 4 sur 4 est à rendre avec la copie)

Exercice N°1:(5 points)

- 1) On considère dans \mathbb{C} l'équation (E): $z^2 (5+5i)z 2 + 14i = 0$.
 - a) Vérifier que $(3-i)^2 = 8-6i$.
 - b) Résoudre l'équation (E).
- 2) Dans le plan complexe muni d'un repère orthonormé direct (O,\vec{u},\vec{v}) , on considère les points A et D d'affixes respectives $z_A = 4 + 2i$ et $z_D = 1 + 3i$.
 - a) Dans la figure 1 de l'annexe ci-jointe, placer les points A et D.
 - b) Montrer que $(z_A z_D)\overline{z_D} = -10i$.
 - c) Montrer que le triangle OAD est isocèle rectangle en D.
- 3) Soit (\mathscr{C}) le cercle de centre O et de rayon $2\sqrt{5}$.
 - a) Vérifier que le point A appartient à (%).
 - b) La droite (OD) coupe le cercle (\mathscr{C}) en un point B tel que Re(z_B) > 0. Construire le cercle (%) et placer le point B.
- 4) a) On pose $\alpha = z_B z_D$. Justifier que α est un réel.
 - b) Montrer que $|\alpha| = 10\sqrt{2}$.
 - c) Montrer que $z_B = \sqrt{2} + 3\sqrt{2}i$.

Exercice N°2:(4 points)

On considère la matrice $A = \begin{pmatrix} -3 & 4 & 2 \\ -2 & 3 & 1 \\ 2 & 2 & 0 \end{pmatrix}$.

1) Calculer le déterminant de la matrice A et déduire que A est inversible. (On notera A-1 la matrice inverse de A).

- 2) a) Calculer la matrice A2.
 - b) Vérifier que $A^2 + A = 2I_3$, où I_3 est la matrice unité d'ordre 3.
 - c) Montrer que $A^{-1} = \frac{1}{2} (A + I_3)$.
- 3) On considère le système (S) suivant : $\begin{cases} -3x + 4y + 2z = 1 \\ -2x + 3y + z = -3 & \text{où } x, y \text{ et } z \text{ des réels.} \\ 2x 2y = 4 \end{cases}$
 - a) En utilisant l'écriture matricielle du système(S), montrer que $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$.
 - b) Résoudre alors le système(S).

Exercice N°3:(5 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 7x - 6y = 3.

- 1) a) Vérifier que le couple (3,3) est une solution de l'équation (E).
 - b) Montrer que l'ensemble des couples (x,y) solutions de l'équation (E) est $\left\{ (6k+3,7k+3), k\in\mathbb{Z} \right\}.$
- 2) Soit (x,y) une solution de l'équation (E) et d = PGCD(x,y). Montrer que d = 1 ou d = 3.
- 3) On pose $a = 6 \times 5^{2023} + 3$ et $b = 7 \times 5^{2023} + 3$.
 - a) Vérifier que le couple (a,b) est une solution de l'équation (E) .
 - b) Vérifier que $5^2 \equiv 1[3]$ et déterminer le reste de la division euclidienne de b par 3.
 - c) Déterminer PGCD(a,b).
- 4) a) Soit k un entier relatif. Montrer que si 3 divise (7k + 3) alors 3 divise k.
 - b) Montrer que l'ensemble des couples (x,y) solutions de l'équation (E) tels que $PGCD(x,y) = 3 \ \text{est} \ \left\{ (18p+3,21p+3), p \in \mathbb{Z} \right\}.$

Exercice N°4:(6 points)

- 1) Soit la fonction g définie sur \mathbb{R} par $g(x) = e^{2x} 2x$.
 - a) Etudier le sens de variation de la fonction g sur $\mathbb R$.
 - b) Déduire que pour tout $x \in \mathbb{R}$, g(x) > 0.
- 2) Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{2}e^{2x} x^2 + \frac{1}{2}$ et (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .
 - a) Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats obtenus.
 - b) Vérifier que pour tout $x \in \mathbb{R}^*$, $f(x) = x^2 \left[\frac{1}{2} \left(\frac{e^x}{x} \right)^2 1 \right] + \frac{1}{2}$.
 - c) Calculer $\lim_{x \to +\infty} f(x)$ et montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement les résultats obtenus.
- 3) a) Justifier que f est dérivable sur $\mathbb R$ et vérifier que pour tout $x \in \mathbb R$, f'(x) = g(x).
 - b) Dresser le tableau de variation de la fonction f.
 - c) Montrer que la courbe (C) coupe l'axe des abscisses en un unique point d'abscisse α et que $-0.8 < \alpha < -0.7$.
- 4) a) Montrer que le point I(0,1) est un point d'inflexion pour la courbe (C).
 - b) Montrer qu'une équation de la tangente T à (C) au point I est y = x + 1.
- 5) Dans la figure 2 de l'annexe ci-jointe, tracer la tangente T et la courbe (C).
- 6) Soit \mathcal{A} l'aire, en unité d'aire, de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x=0 et x=1.

Calculer A.

	Section			N	l° d'ins	cription	:		Sér	ie :	Signatu	ires des s	urveillants
	Nom et Prénom :												
	Date et lieu de naissance :												
×													
	Ép	reuve:	Math	émat	iques	- Sec	tion	: Scie	ences	de l'info	rmatiqu	ie	
Session principale (2023) Annexe à rendre avec la copie													
				5									
Figure	<u>:1</u>												
				4									
				3-									
				2									
				1. V									
- 5	-4	-3 -2	<u>-1</u>	00	\vec{u} i	ż	3	4	5				
4				-1		Ī							
				-2-									
				-3									
				-4									
Figure	e 2									4			
										3-			
										2-			
										4			
										\vec{j}			
													
						_	3	-2	-1	0	\vec{i} 1	2	3
										-1			
										-2-			
										-3-			