Matière : Sciences physiques			
Session Principale 2021	Section : Sport		

Corrigé

CHIMIE

Exercice 1

1)

- Pour déterminer sans ambigüité le nom de l'alcool on convient de :
 - choisir la chaîne principale linéaire la plus longue contenant le carbone qui porte le groupe -OH;
- numéroter cette chaîne principale de telle sorte que l'indice de position attribuée au groupe –OH soit le plus faible possible ;
- le nom de l'alcool est formé en ajoutant le suffixe « ol » au nom de l'hydrocarbure possédant le même nombre d'atomes de carbone que la chaîne principale ;
- indiquer éventuellement par des indices les positions des groupements greffés sur cette chaine.
- > Pour déterminer la classe de l'alcool :

Selon que l'atome de carbone portant (dit carbone fonctionnel) le groupe caractéristique -OH est lié à 1, 2, 3 atomes de carbone. Dans un alcool primaire, l'atome de carbone fonctionnel porte 2 atomes H, dans un alcool secondaire, il porte 1 atome d'hydrogène, et dans un alcool tertiaire, aucun atome d'hydrogène.

A ₁	$ \overset{\circ}{\mathbf{C}}\mathbf{H}_{3} - \overset{\circ}{\mathbf{C}}\mathbf{H} - \overset{1}{\mathbf{C}}\mathbf{H}_{2} - \mathbf{O}\mathbf{H} $ $ \overset{\circ}{\mathbf{C}}\mathbf{H}_{3} $	2-méthylpropan-1-ol	Primaire
A ₂	CH ₃ - CH ₂ - CH - OH	Butan-2-ol	secondaire
A ₃	$^{3}_{CH_{3}} - ^{2}_{CH_{2}} - ^{1}_{CH_{2}} - OH$	Propan-1-ol	Primaire
A ₄	OH CH ₃ - CH ₂ - CH ₃ CH ₃	2-méthy <mark>lbutan-2-ol</mark>	tertiaire

2) a- Définition : ce sont des composés qui ont la même formule brute mais des formules semidéveloppées différentes. **b-** Les deux alcools **A**₁ et **A**₂ ont la même formule brute **C**₄**H**₁₀**O** mais des formules semi-développées différentes.

3) Rappel:

Alcool	1 ^{ere} oxydation	2 ^{ème} oxydation
	Aldéhyde	Acide carboxylique
Alcool primaire	- rosit le réactif de schiff	- ses vapeurs font virer le papier
		pH au jaune
	Cétone	Il n'y a pas de 2 ^{ème} oxydation
Alcool secondaire	-Précipité jaune avec 2,4-D.N.P.H	
	- ne réagit pas avec le réactif de schiff	
Alcool tertiaire	Pas d'oxydation	

- b- Sans action sur le réactif de Schiff et donne un précipité jaune avec le 2,4-D.N.P.H
- c- C'est le composé A2 car c'est un alcool secondaire et son oxydation ménagée donne une cétone.
- 4) a- C'est l'alcool A₃ car c'est un alcool primaire (voir le rappel dans le tableau).

c- L'oxydation ménagée de l'alcool primaire dans la deuxième étape donne le composé C qui un acide

carboxylique de formule semi-développée :
$$\mathbf{CH_3} - \mathbf{CH_2} - \mathbf{C} - \mathbf{OH}$$

d- Le composé B est un aldéhyde qui rosit le réactif de Schiff.

Le Composé C est un acide carboxylique qui rougit le papier pH.

Exercice 2

1) a- N-méthylpropanamine : $CH_3 - CH_2 - CH_2 - NH - CH_3$

b- L'amine **A**₁ est une amine secondaire (puisqu'elle s'écrit sous la forme R₁-NH-R₂ où R₁ et R₂ sont des radicaux alkyles).

La réaction de l'amine secondaire A₁ avec l'acide nitreux donne de l'eau et une nitrosamine de

formule semi-développée :
$$\mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{N} - \mathbf{CH_3}$$

- 2) a- La réaction d'une amine primaire donne de l'eau, de diazote et un alcool et puisque le composé E est un alcool alors A₂ est une amine primaire.
 - **b-** La formule semi développée : $\mathbf{CH_3} \mathbf{CH_2} \mathbf{CH} \mathbf{NH_2}$ $\mathbf{CH_3}$

Le groupement R n'est autre qu'un atome d'hydrogène : -H

3) a- L'équation de la réaction :
$$CH_3 - N - CH_2 - CH_3 + H_2O \rightleftharpoons CH_3 - NH^+ - CH_2 - CH_3 + OH^- CH_3$$

$$CH_3 \qquad CH_3$$

b- Un caractère basique

c- On utilise comme indicateur coloré le BBT qui vire au bleu avec les solutions basiques.

PHYSIQUE

Exercice 1

I-1) * Le poids \vec{P}

*
$$\|\vec{\mathbf{P}}\| = \mathbf{m} \cdot \|\vec{\mathbf{g}}\|$$
 ; application numérique $\|\vec{\mathbf{P}}\| = 4,12 \text{ N}$

- 2) Rappel : Le travail du poids d'un corps ne dépend pas du chemin suivi. On a alors :
 - * Cas descendant : $W_{A\rightarrow B}$ (\vec{P}) = $\|\vec{P}\|$.h
 - * Cas ascendant : $W_{\scriptscriptstyle B\to A}\left(\vec{\mathbf{P}}\right) = -\left\|\vec{\mathbf{P}}\right\|$.h
 - * Lors du tire, le ballon remonte du point O vers le point A d'où : $W(\vec{P}) = -m \cdot ||\vec{g}|| \cdot h_A$
- 3) a- Enoncé: Dans un référentiel galiléen, la variation de l'énergie cinétique d'un système matériel entre deux instants t₁ et t₂ correspondant respectivement aux passages par les points A et B est égale à la somme algébriques des travaux de toutes les forces extérieures et intérieures appliquées sur le système entre ces deux instants, soit:

$$\Delta E_{C} = \sum_{A \to B} W(\vec{F}_{ext} + \vec{F}_{int})$$

$$b - \Delta E_{C \to A} = W_{O \to A}(\vec{P}) \implies \frac{1}{2} m \|\vec{V}_A\|^2 - \frac{1}{2} m \|\vec{V}_O\|^2 = -m. \|\vec{g}\|. h_A$$

$$\Rightarrow \qquad \|\vec{V}_A\|^2 - \|\vec{V}_O\|^2 = -2. \|\vec{g}\|. h_A$$

$$\Rightarrow \qquad h_A = \frac{\|\vec{V}_O\|^2 - \|\vec{V}_A\|^2}{2. \|\vec{g}\|}$$

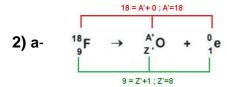
c- h_A = 2,12m; les joueurs du mur n'arrêteront pas le ballon car $H_{mur} < h_A$.

II) 1-
$$E_A = E_C(A) + E_{pp}(A) = \frac{1}{2} m. \|\vec{V}_A\|^2 + m. \|\vec{g}\|.h_A$$

$$E_B = E_C(B) + E_{pp}(B) = \frac{1}{2} m \|\vec{V}_B\|^2 + m. \|\vec{g}\|.h_B$$

2) a-
$$\Delta E = \sum W_{A\rightarrow B} (\vec{F} \text{ int .diss}) + \sum W_{A\rightarrow B} (\vec{F} \text{ ext})$$

Pas de force de frottement \Rightarrow Δ E=0 d'ou E $_{A}$ = E $_{B}$


Donc l'énergie se conserve d'ou le système {Terre, ballon} est conservatif.

b-
$$E_A = E_B$$
 $\Rightarrow \frac{1}{2} m. \|\vec{V}_A\|^2 + m. \|\vec{g}\|. h_A = \frac{1}{2} m \|\vec{V}_B\|^2 + m. \|\vec{g}\|. h_B$
 $\|\vec{V}_A\|^2 - \|\vec{V}_B\|^2 + 2 \|\vec{g}\|. h_A = + 2 \|\vec{g}\|. h_B$
 $h_B = \frac{\|\vec{V}_A\|^2 - \|\vec{V}_B\|^2}{2. \|\vec{g}\|} + h_A$; $h_B = 2,32 m$

c- h_B < H : donc le coup franc est réussi.

Exercice 2

1) Nombre de charge :
$$Z = 9$$

Nombre de masse : $A = 18$
Nombre de neutrons : $N = A-Z = 9$

*Conservation du nombre total de charge : 9 = Z'+1 ; Z'=8

*Conservation du nombre total de masse : 18 = A'+ 0 ; A'=18

b- Puisque il y a émission d'un positron $_{-1}^{0}e$, donc le rayonnement est de type β^{+} .

3) a- Définition : C'est la durée au bout de laquelle la moitié des noyaux radioactifs se sont désintégrés.

b- Au bout d'un temps égal à t = n.T, le nombre de noyau N non désintégrés est égale au nombre de noyau initial N_0 divisé par 2^n : $N = \frac{N_0}{2^n}$

t	0	Т	2Т	3Т	4T
$\frac{N}{N_o}$	1	<u>1</u>	1/4	1 8	1 16

c- À l'instant t': $\frac{N'}{N_0} = \frac{1}{4} = \frac{1}{2^2}$, avec n= 2, donc d'après le tableau t'=2.T

d- Pour
$$\frac{N}{N_0} = \frac{1}{4}$$
 soit $t' = 2.T$ donc $T = \frac{t'}{2} = 110$ min

4) La période du fluor 17 ne convient pas avec la durée de l'examen.