RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2019

Session de contrôle

Épreuve : Sciences de la vie et de la terre

Section :
Sciences expérimentales

Durée : 3h

Coefficient de l'épreuve : 4

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

PREMIERE PARTIE (8 points)

I- QCM (4 points)

Pour chacun des items suivants (de 1 à 8), il peut y avoir une ou deux réponse(s) correcte(s). Relevez sur votre copie le numéro de chaque item et indiquez dans chaque cas la (ou les deux) lettre(s) correspondant à la (ou aux deux) réponse(s) correcte(s).

NB : Toute réponse fausse annule la note attribuée à l'item.

1) La destruction sélective des cellules de Sertoli entraîne :

- a- la stérilité de l'animal.
- b- la diminution du taux plasmatique de la LH.
- c- la diminution du taux plasmatique d'inhibine.
- d- la diminution du taux plasmatique de la GnRH.

2) Dans les conditions physiologiques normales, la régulation de la fonction reproductrice chez l'homme et chez la femme fait intervenir :

- a- un rétrocontrôle positif.
- b- un rétrocontrôle négatif.
- c- les gonadostimulines.
- d- l'hormone gonadotrophique chorionique (HCG).

3) La polyploïdie est une mutation qui correspond à :

- a- la duplication d'un gène ancestral.
- b- la fusion de chromosomes deux à deux.
- c- la modification de la structure chromosomique.
- d- la multiplication du nombre de chromosomes de base.

4) La chaleur retardée qui accompagne l'activité musculaire est libérée par la réaction de :

- a- l'hydrolyse de l'ATP.
- b- la fermentation lactique.
- c- l'oxydation de l'acide pyruvique.
- d- la régénération de la phosphocréatine.

5) Le cortisol est une hormone qui :

- a- active la néoglucogenèse.
- b- est sécrétée par la médulosurrénale.
- c- intervient dans la phase d'alarme au cours d'un stress.
- d- est sécrétée sous l'effet l'Adréno-Cortico-Tropic-Hormone (ACTH).

6) Le GABA est un neurotransmetteur inhibiteur qui induit l'ouverture des canaux:

- a- chimio-dépendants aux ions Cl⁻.
- b- chimio-dépendants aux ions Na⁺.
- c- voltage-dépendants aux ions Na+.
- d- voltage-dépendants aux ions Ca²⁺.

7) Les effecteurs de la réponse immunitaire à médiation cellulaire sont :

- a- les anticorps.
- b- les plasmocytes.
- c- les lymphocytes T4.
- d- les lymphocytes T cytotoxiques.

8) La phase SIDA déclarée correspond à :

- a- l'apparition de maladies opportunistes.
- b- la diminution du nombre de VIH dans le sang.
- c- l'augmentation de la sécrétion d'anticorps anti-VIH.
- d- l'augmentation progressive du nombre de lymphocytes T4.

II- Régulation de la pression artérielle (4 points)

La régulation de la pression artérielle fait intervenir des fibres nerveuses sympathiques, des fibres nerveuses parasympathiques et des hormones.

- 1) Expliquez le mécanisme d'action des fibres sympathiques et des fibres parasympathiques.
- 2) Expliquez comment l'ADH (hormone antidiurétique) et le système rénine-angiotensine interviennent dans la régulation de la pression artérielle suite à une hypotension.

DEUXIEME PARTIE (12 points)

I- Procréation (4 points)

On se propose de préciser certaines conditions de la fécondation humaine en se basant sur un examen, des cultures et des expériences.

Examen:

On réalise des spermogrammes chez deux hommes X et Y.

Le document 1 présente les résultats obtenus chez X et Y et ceux obtenus chez un homme normal témoin.

Paramètres	L'homme X	L'homme normal témoin	L'homme Y
Volume	3,9 mL	> 3 mL	4,2 mL
На	7,3	7,3	7,3
Numérotation dans le sperme	64,2.10 ⁶ mL ⁻¹	> 60.10 ⁶ mL ⁻¹	67.10 ⁶ mL ⁻¹
Mobilité totale	60%	> 52%	55%
Spermatozoïdes de forme normale	10%	> 56%	90%

Document 1

1) A partir de l'analyse des spermogrammes des hommes X et Y comparé à celui de l'homme normal témoin, déduisez lequel des deux hommes X ou Y ne présente pas d'anomalies.

Cultures:

On met en contact, dans des cultures, des spermatozoïdes prélevés à différents endroits de l'appareil génital d'un homme normal et de plusieurs ovocytes II d'une femme traitée par la FSH. Puis, on détermine le pourcentage de gamètes fécondés.

Cultures	Mise en contact des ovocytes II avec des spermatozoïdes prélevés de :	Pourcentage de gamètes fécondés
1	la lumière du tube séminifère	0%
2	l'épididyme.	90%
3	l'urètre.	0%

Document 2

Les cultures et leurs résultats sont présentés par le document 2.

2) A partir de l'exploitation des résultats des différentes cultures et de vos connaissances, expliquez les transformations subies par les spermatozoïdes à partir de la lumière du tube séminifère et traversant l'épididyme et l'urètre.

Expérience 1 :

Chez une femme normale ayant un cycle sexuel de 28 jours, on prélève de la glaire cervicale le 8^{ème} et le 14^{ème} jour de son cycle. A chaque fois, le prélèvement est observé puis placé dans un milieu en présence de sperme éjaculé d'un homme normal. Après une heure, on vérifie la migration des spermatozoïdes à travers la glaire cervicale dans chaque milieu.

	de l'état de la glaire cervicale	Milieux	Migration des spermatozoïdes
Le 8 ^{ème} jour		Milieu 1 : glaire cervicale prélevée le 8 ^{ème} jour du cycle + sperme éjaculé.	Absente
Le 14 ^{ème} jour		Milieu 2 : glaire cervicale prélevée le 14 ^{ème} jour du cycle + sperme éjaculé.	Normale

Document 3

3) Etablissez la relation entre la structure de la glaire cervicale et la migration des spermatozoïdes.

Expérience 2 :

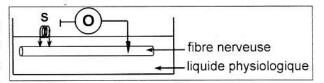
A partir de l'expérience 1, on prélève des spermatozoïdes de chaque milieu et on les met en contact avec des ovocytes II, puis on mesure le pourcentage de gamètes fécondés.

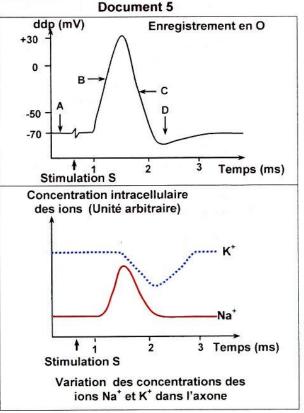
Les résultats son	t présentés	par le	document 4.
-------------------	-------------	--------	-------------

Spermatozoïdes prélevés du :	Pourcentage de gamètes fécondés
Milieu 1	0%
Milieu 2	90%

Document 4

- 4) A partir de l'exploitation des résultats obtenus et en faisant appel à vos connaissances, expliquez la transformation subie par les spermatozoïdes.
- 5) A partir des informations précédentes, dégagez les conditions de la fécondation mises en évidence.


II- Neurophysiologie (4 points)


On se propose d'étudier le mécanisme de la naissance du potentiel d'action. Pour cela, on réalise une étude expérimentale en utilisant le dispositif présenté par le document 5 et deux toxines ayant deux modes d'action différents.

Expérience 1 :

On enregistre, au niveau de l'oscilloscope O l'activité électrique de la fibre nerveuse et on suit la variation des concentrations des ions Na⁺ et K⁺ dans cette fibre (axone), avant et après l'application d'une stimulation efficace S. Le document 6 présente les résultats obtenus.

- 1) a- Analysez l'enregistrement obtenu en O en vue d'identifier les phases A, B, C et D.
 - **b-** Etablissez la relation entre les différentes phases de l'activité électrique de la fibre nerveuse et la variation de de la concentration intracellulaire des ions Na⁺ et K⁺.

Document 6

Expérience 2

On suit les flux des ions Na⁺ et K⁺ à travers la membrane de la fibre nerveuse (axone) suite à la stimulation S et dans deux conditions expérimentales différentes.

Les conditions expérimentales et les résultats sont présentés par le document 7.

Conditions	Résultats
Addition de la tétrodotoxine (TTX) dans le liquide physiologique.	 Absence de flux entrant des ions Na⁺ Absence de flux sortant des ions K⁺
Injection dans l'axone de la toxine tétraéthylammonium (TEA).	 Présence de flux entrant des ions Na⁺ Absence de flux sortant des ions K⁺

Document 7

- 2) A partir de l'exploitation des résultats de l'expérience 2 et en faisant appel à vos connaissances, dégagez le mode d'action de chaque toxine.
- 3) A partir des informations tirées précédemment et en faisant appel à vos connaissances, expliquez, le mécanisme ionique à l'origine des phases B et C du potentiel d'action.

III- Génétique formelle (4 points)

On se propose d'étudier le mode de transmission de deux couples d'allèles chez la drosophile :

- > un couple d'allèles (vg⁺, vg) contrôlant la "taille des ailes" avec :
 - vg[†] détermine le phénotype "ailes longues".
 - vg détermine le phénotype "ailes vestigiales".
- un couple d'allèles (bw⁺, bw) contrôlant la "couleur des yeux» avec :
 - bw⁺ détermine le phénotype "yeux rouges".
 - bw détermine le phénotype "yeux bruns.
- 1) Sachant que vg⁺ domine vg et bw⁺ domine bw, proposez un croisement qui permet de déterminer la relation de dominance entre les allèles de chaque couple.

On réalise le croisement suivant : des drosophiles femelles d'une souche S aux ailes longues et aux yeux rouges sont croisées avec des mâles aux ailes vestigiales et aux yeux bruns.

La descendance obtenue est composée de :

- 32 % drosophiles aux ailes longues et aux yeux rouges,
- 32 % drosophiles aux ailes vestigiales et aux yeux bruns,
- 18 % drosophiles aux ailes longues et aux yeux bruns,
- 18 % drosophiles aux ailes vestigiales et aux yeux rouges.
- 2) Analysez le résultat de ce croisement en vue :
 - de préciser si les deux couples d'allèles sont liés ou indépendants.
 - d'écrire le génotype de la femelle de la souche S.
- Schématisez le comportement des chromosomes aboutissant à la formation de gamètes chez les femelles de la souche S.
- 4) Déterminez le pourcentage des phénotypes issus d'un croisement entre deux drosophiles de la souche S sachant que chez le mâle de la drosophile il ne se produit pas de crossing-over.