Correction du sujet de baccalauréat 2019 section science expérimentale

Session contrôle

Exercice 1; (4 points)

Questions	solutions
1)	b/
2)	b/
3)	c /
4) i /	a/
ii/	c /

Exercice 2 (4 points)

Questions	Solutions
1) a/	$(3+2i)^2 = 9+12i + (2i)^2 = 5+12i$
	$(E_1): z^2 + iz + 1 + 3i = 0$
	$\Delta = b^{2} - 4ac = i^{2} - 4(1+3i)$ $z' = \frac{-i - i(3+2i)}{2} = -2i + 1$
b/	$= -1 - 4 - 3i = -(5 + 12i) = \left[i(3 + 2i)\right]^{2} z = \frac{-i + i(3 + 2i)}{2} = i - 1$
	$(E_2): z^2 - iz + 1 - 3i = 0$
c/	$z^{2} - iz + 1 - 3i = 0 \Leftrightarrow \overline{z^{2} - iz + 1 - 3i} = 0 \Leftrightarrow \overline{z^{2} + iz + 1 + 3i} = 0$ Alors si z est solution de (E_{2}) alors \overline{z} est solution de (E_{1})
	Donc les solutions $de(E_2)$ sont $1+2i$ et -1-i
2)	On a $(z^2 - iz + 1 - 3i)(z^2 + iz + 1 + 3i) = z^4 + 3z^2 + 6z + 10 d'où$
	$z^4 + 3z^2 + 6z + 10 = 0 \Leftrightarrow (z^2 - iz + 1 - 3i)(z^2 + iz + 1 + 3i) = 0$
	$\Leftrightarrow z^2 - iz + 1 - 3i = 0 \text{ ou } z^2 + iz + 1 + 3i = 0$
	$\Leftrightarrow z = 1 + 2i \text{ ou } z = -1 - i \text{ ou } z = 1 - 2i \text{ ou } z = -1 + i$
3) a/	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
b/	$z_{\overline{AB}} = z_B - z_A = 1 - 2i - 1 - 2i = -4i$
	$z_{\overline{DC}} = z_C - z_D = -1 - i + 1 - i = -2i$
	Alors $\frac{z_{\overline{AB}}}{z_{\overline{DC}}} = 2 \in IR$ alors $(AB) (DC)$ ainsi ABCD est un trapèze
c/	$A = \frac{(AB + DC) \times h}{2} = 6 \text{ u a}$

Exercice 3 (5 points)

Questions	
Questions	Solution
1) a/	$M(x,y,z) \in S \iff x^2 + y^2 + z^2 - 2x + 4y + 4z + 5 = 0$
	\Leftrightarrow $(x^2 - 2x) + (y^2 + 4y) + (z^2 + 4z) + 5 = 0$
	$\Leftrightarrow (x-1)^2 - 1 + (y+2)^2 - 4 + (z+2)^2 - 4 + 5 = 0$
	$\Leftrightarrow (x-1)^2 + (y+2)^2 + (z+2)^2 = 2^2$
	Donc S est une sphère de centre $\Omega(1,-2,-2)$ et de rayon $R=2$
b/	$d(\Omega, P) = \frac{ 1+2-2+1 }{\sqrt{1+4+4}} = \frac{2}{3} < R = 2$
	Donc $S \cap P$ est un cercle de centre $K(a,b,c)$ et de rayon $r = \sqrt{R^2 - d^2} = \sqrt{4 - \frac{4}{9}} = \frac{4\sqrt{2}}{3}$
	$on \ a \begin{cases} \overrightarrow{\Omega K} = \alpha \overrightarrow{n_p} \\ K \in p \end{cases} \Leftrightarrow \begin{cases} a - 1 = \alpha \\ b + 2 = -2\alpha \\ c + 2 = 2\alpha \\ a - 2b + 2c + 1 = 0 \end{cases}$
	$\Leftrightarrow \begin{cases} a = \alpha + 1 \\ b = -2\alpha - 2 \\ c = 2\alpha - 2 \\ \alpha + 1 - 2(-2\alpha - 2) + 2(2\alpha - 2) + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{7}{9} \\ b = -\frac{14}{9} \\ c = -\frac{22}{9} \\ \alpha = -\frac{2}{9} \end{cases}$
	Alors $K(\frac{7}{9}, -\frac{14}{9}, -\frac{22}{9})$
2)	$(K\Omega)$ est une droite qui passe par $\Omega(1,-2,-2)$ et de vecteur directeur $\overrightarrow{n_P}\begin{pmatrix}1\\-2\\2\end{pmatrix}$ $(\overrightarrow{n_P}$ est un
	vecteur normal à P)
	$M(x,y,z) \in (K\Omega) \Leftrightarrow \overrightarrow{\Omega M} = t \overrightarrow{n_p}, t \in \mathbb{R} \Leftrightarrow \begin{cases} x-1=t \\ y+2=-2t \\ z+2=t \end{cases}$
	Donc $(K\Omega)$: $\begin{cases} x = 1+t \\ y = -2-2t \\ z = -2+2t \end{cases}$, $t \in IR$
3)	Q est le plan tangent à S au point $I\left(\alpha,\beta,\gamma\right)$ donc $\overrightarrow{\Omega I}\begin{pmatrix} \alpha-1\\ \beta+2\\ \gamma+2 \end{pmatrix}$ est un vecteur normal à Q
	donc $Q: (\alpha - 1)x + (\beta + 2)y + (\gamma + 2)z + d = 0 \text{ or } I(\alpha, \beta, \gamma) \in Q \text{ donc}$ $(\alpha - 1)\alpha + (\beta + 2)\beta + (\gamma + 2)\gamma + d = 0$ $\Leftrightarrow \alpha^2 - \alpha + \beta^2 + 2\beta + \gamma^2 + 2\gamma + d = 0$ Et le faite que le point $I \in S$ alors

	d'où N est point de Q.
	$\overrightarrow{I\Omega} \cdot \overrightarrow{IN} = KI^2 - KN \cdot K\Omega = 0$
c/	I est un point du cercle (C) donc KI=2.
	-6 = -2 + 2t
	On a $\left\{ 2 = -2 - 2t \implies t = -2 \text{ ainsi } N\left(-1, 2, -6\right) \in \left(K\Omega\right) \right\}$
b/	$N\left(-1,2,-6\right)$
	Ainsi $Q: (\alpha - 1)x + (\beta + 2)y + (\gamma + 2)z - \alpha + 2\beta + 2\gamma + 5 = 0$
	$\Leftrightarrow d = -\alpha + 2\beta + 2\gamma + 5$
	$\Leftrightarrow d = -(2\alpha - 4\beta - 4\gamma - 5) + \alpha - 2\beta - 2\gamma$
	$\Leftrightarrow d = -(\alpha^2 + \beta^2 + \gamma^2) + \alpha - 2\beta - 2\gamma$
	$\alpha^2 - \alpha + \beta^2 + 2\beta + \gamma^2 + 2\gamma + d = 0$
	donc on aura:
	$\alpha^2 - 2\alpha + \beta^2 + 4\beta + \gamma^2 + 4\gamma + 5 = 0 \Leftrightarrow \alpha^2 + \beta^2 + \gamma^2 = 2\alpha - 4\beta - 4\gamma - 5$

Exercice 4 (7 points)

Quest ions	Solution
1)	$g(x) = (x+1)\ln(x+1) + \frac{x}{2}$ et $x \in]-1, +\infty[$
a /	On a $\lim_{x \to (-1)^+} (x+1) = 0$ et $\lim_{x \to 0^+} x \ln x = 0$ donc $\lim_{x \to (-1)^+} (x+1) \ln (x+1) = 0$
b/	Pour tout $x \in]-1, +\infty[$ on a $g'(x) = \ln(x+1) + 1 + \frac{1}{2} = \ln(x+1) + \frac{3}{2}$
c /	$g'(x) = 0 \Leftrightarrow \ln(x+1) = -\frac{3}{2} \Leftrightarrow x = e^{-\frac{3}{2}} - 1$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$g(e^{-\frac{3}{2}}-1) = -\frac{3}{2}e^{-\frac{3}{2}} + \frac{1}{2}e^{-\frac{3}{2}} - \frac{1}{2} = -\frac{1}{2}\left(1 + e^{-\frac{3}{2}}\right) < 0$
d /	$g(0) = 0$ $ \begin{array}{c c} x & -1 & 0 \\ \hline g(x) & - & + \\ \hline \end{array} $
2) a	Soit $f(x) = x^2 \ln(x+1)$ pour tout $x \in]-1,+\infty[$
/	$\lim_{x \to +\infty} f(x) = +\infty$
	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} x \ln(x+1) = +\infty$
4 /	La représentation graphique de f admet une branche parabolique de direction l'axe des ordonnées.
b/	$\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} x^2 \ln(x+1) = -\infty$
	En effet;

$\lim_{x\to (-1)^n} \ln(x+1) = 0 \text{ ct } \lim_{x\to (-1)^n} \ln(x+1) = -\infty$ $et \lim_{x\to (-1)^n} x^2 = 1$ La droite d'équation $x = -1$ est une asymptote verticale de la représentation graphique de f $e' \ln(x+1) + \frac{x}{x+1} = \frac{2x}{x+1} \left((x+1) \ln(x+1) + \frac{x}{2} \right)$ $= \frac{2x}{x+1} g(x)$ $d' \text{Determinons le signe de } f'(x)$ $x = \frac{1}{f(x)} = \frac{2x}{x+1} y(x) + \frac{x}{x+1} = \frac{2x}{x+1} \left(\frac{x+1}{x+1} \right) \ln(x+1) + \frac{x}{2} + \frac{x}{x+1} + \frac{x}{x+1}$		
La droite d'équation $x = -1$ est une asymptote verticale de la représentation graphique de f or pour tout $x \in]-1, +\infty[$ on a $f'(x) = 2x \ln(x+1) + \frac{x^2}{x+1} = \frac{2x}{x+1} (x+1) \ln(x+1) + \frac{x}{2})$ $= \frac{2x}{x+1} g(x)$ Déterminons le signe de $f'(x)$ $\frac{x}{g(x)} = \frac{-1}{-1} + \infty$ $\frac{-1}{f'(x)} = \frac{2x}{x+1} g(x)$ Soit alors le tableau de variation de f $\frac{x}{f'(x)} = \frac{-1}{x+1} g(x) + 0 + \infty$ Soit alors le tableau de variation de f $\frac{x}{f'(x)} = \frac{-1}{x+1} g(x) + 0 + \infty$ $\frac{-1}{f'(x)} = \frac{-1}{x+1} g(x) + 0 + \infty$ Pour tout $n \ge 1$ on pose $1_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ $\frac{1}{x+1} = \frac{1}{x+1} g(x) + \frac{1}{x+1} g(x) + \frac{1}{x+1} g(x)$ On intègre par partie		$\lim_{x \to (-1)^{+}} (x+1) = 0 \text{ et } \lim_{x \to 0^{+}} \ln x = -\infty \text{ donc } \lim_{x \to (-1)^{+}} \ln (x+1) = -\infty$
La droite d'équation $x = -1$ est une asymptote verticale de la représentation graphique de f or pour tout $x \in]-1, +\infty[$ on a $f'(x) = 2x \ln(x+1) + \frac{x^2}{x+1} = \frac{2x}{x+1} (x+1) \ln(x+1) + \frac{x}{2})$ $= \frac{2x}{x+1} g(x)$ Déterminons le signe de $f'(x)$ $\frac{x}{g(x)} = \frac{1}{x+1} = \frac{x+1}{x+1} = \frac{x+1}{x+1}$ Soit alors le tableau de variation de f $\frac{x}{f'(x)} = \frac{1}{2x} = \frac{1}{x+1} = \frac{x+1}{x+1}$ Pour tout $n \ge 1$ on pose $1_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ $\frac{1}{x+1} = \frac{1}{x+1} = \frac{x+1}{x+1}$		$\int_{x\to(-1)^{+}}^{\infty} t^{2} = 1$
for tout $x \in J$, $x_1 = 2x$ $\ln(x+1) + \frac{x^2}{x+1} = \frac{2x}{x+1} (x+1) \ln(x+1) + \frac{x}{2}$ $= \frac{2x}{x+1} g(x)$ Determinons le signe de $f'(x)$ $\frac{x}{g(x)} - \frac{1}{x} + \frac{1}{x+1} = \frac{x^2}{x+1} $ Soit alors le tableau de variation de f $\frac{x}{f'(x)} = \frac{2x}{x+1} g(x) + \frac{1}{x+1} + \frac{1}{x+1} = \frac{x^2}{x+1} $ Soit alors le tableau de variation de f $\frac{x}{f'(x)} = \frac{1}{x+1} + \frac{1}{x+1} + \frac{1}{x+1} = \frac{x^2}{x+1} + \frac{1}{x+1} = \frac{x^2}{x+1}$ Pour tout $x \neq -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ $\frac{1}{x+1} = \frac{1}{x+1} = \frac{x^2}{x+1} = \frac{x^2}{x+1}$ $\frac{1}{x+1} = \frac{1}{x+1} = \frac{x^2}{x+1} = \frac{x^2}$		
$=\frac{2x}{x+1}g(x)$ Déterminons le signe de f '(x) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c/	
Déterminons le signe de $f'(x)$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$f'(x) = 2x \ln(x+1) + \frac{x^2}{x+1} = \frac{2x}{x+1} \left((x+1) \ln(x+1) + \frac{x}{2} \right)$
g(x) $ 0$ $+$ ∞ $\frac{2x}{x+1} - 0 + \frac{2x}{y(x)} + 0 + \frac{2x}{y(x)} + \frac{2x}{y(x)} + 0 + \frac{2x}{y(x)} $		
g(x) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d/	Déterminons le signe de $f'(x)$
Soit alors le tableau de variation de f $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x -1 0 +∞
Soit alors le tableau de variation de f $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		g(x) - 0 +
Soit alors le tableau de variation de f $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Soit alors le tableau de variation de f $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x+1
e/ Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		$f'(x) = \frac{2x}{x+1} g(x) \qquad \qquad + \qquad \qquad \bullet \qquad \qquad +$
e/ Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		
e/ Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		+00
e/ Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		
e/ Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		
3) a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		f
3) a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		-00
3) a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie	e/	3 /
3) a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1) + 1}{x+1} = \frac{x^2 - 1 + 1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		2 1
a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^{-1} \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b I ₁ = $\int_0^1 x \ln(x+1) dx$ On intègre par partie		-3 -2 -1 0 i 2 3 4
a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^{-1} \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		-1-
a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^{-1} \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie		-2 -
a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^{-1} \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b I ₁ = $\int_0^1 x \ln(x+1) dx$ On intègre par partie		-3-
a Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^{-1} \ln(x+1) dx$ Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2-1+1}{x+1} = \frac{x^2}{x+1}$ b I ₁ = $\int_0^1 x \ln(x+1) dx$ On intègre par partie		
Pour tout $x \ne -1$ on a $x - 1 + \frac{1}{x+1} = \frac{(x-1)(x+1)+1}{x+1} = \frac{x^2 - 1 + 1}{x+1} = \frac{x^2}{x+1}$ b I ₁ = $\int_0^1 x \ln(x+1) dx$ On intègre par partie		Pour tout $n \ge 1$ on pose $I_n = \int_0^1 x^n \ln(x+1) dx$
$\begin{bmatrix} b \\ l \end{bmatrix}$ $I_1 = \int_0^1 x \ln(x+1) dx$ On intègre par partie	/	
$u(x) = \ln(x+1)$ $u'(x) = \frac{1}{x+1}$ $v'(x) = x$ $v(x) = \frac{1}{2}x^{2}$	b	$x + 1 \qquad x + 1 \qquad x + 1 \qquad x + 1$ $1 - \int_{-1}^{1} x \ln(x+1) dx \qquad \text{On intègre per pertie}$
$u(x) = \ln(x+1)$ $v'(x) = x$ $v(x) = \frac{1}{x+1}$ $v(x) = \frac{1}{2}x^2$	/	$\int_{0}^{1} \int_{0}^{\infty} \ln(x + 1) dx \qquad \text{On integre par partie}$
$v'(x) = x \qquad v(x) = \frac{1}{2}x^2$		$u(x) = \ln(x+1)$ $u'(x) = \frac{1}{x+1}$
		$v'(x) = x$ $v(x) = \frac{1}{2}x^2$

	$I_{1} = \left[\frac{1}{2}x^{2}\ln(x+1)\right]_{0}^{1} - \frac{1}{2}\int_{0}^{1}\frac{x^{2}}{x+1}dx$
	$= \frac{1}{2} \ln 2 - \frac{1}{2} \int_0^1 \left(x - 1 + \frac{1}{x+1} \right) dx$ Donc
	$= \frac{1}{2} \ln 2 - \frac{1}{2} \left[\frac{1}{2} x^2 - x + \ln(x+1) \right]_0^1$
	$= \frac{1}{2} \ln 2 - \frac{1}{2} \left(\frac{1}{2} - 1 + \ln 2 \right) = \frac{1}{4}$
4) a	On pose $h(x) = (x+1)\ln(x+1) - x$
/	h est une fonction dérivable sur $]-1,+\infty[$ et on a pour tout $x \in]-1,+\infty[$,
	$h'(x) = \ln(x+1) + (x+1) \times \frac{1}{(x+1)} - 1 = \ln(x+1)$ ainsi h est une primitive de la fonction
	$x \to \ln(x+1) \text{ sur } -1, +\infty$
b/	On va utiliser une intégration par partie
	$I_{n+1} = \int_0^1 x^{n+1} \ln(x+1) dx$ on pose
	$u(x) = x^{n+1}$ $u'(x) = (n+1)x^n$
	$v'(x) = \ln(x+1)$ $v(x) = h(x)$
	$I_{n+1} = \left[x^{n+1} h(x) \right]_0^1 - (n+1) \int_0^1 x^n h(x) dx = 2 \ln 2 - 1 - (n+1) \int_0^1 x^n \left[(x+1) \ln(x+1) - x \right] dx$
	Donc = $2\ln 2 - 1 - (n+1) \int_0^1 x^{n+1} \ln(x+1) dx - (n+1) \int_0^1 x^n \ln(x+1) dx + (n+1) \int_0^1 x^{n+1} dx$
	$=2\ln 2-1-(n+1)I_{n+1}-(n+1)I_n+\frac{n+1}{n+2}$
	Ainsi on déduit que
	$(n+2)I_{n+1} = -1 + 2\ln 2 + \frac{n+1}{n+2} - (n+1)I_n$
c/	Pour $n = 1$ on trouve $3I_2 = -1 + 2 \ln 2 + \frac{2}{3} - 2I_1$ alors on déduit que
	$I_2 = -\frac{1}{9} + \frac{2}{3} \ln 2 - \frac{1}{6} = -\frac{5}{18} + \frac{2}{3} \ln 2$
	I_{2} est l'aire de la partie du plan illimité par (C) , l'axe des abscisses et les droites d'équation
	respectuves $x = 0$ et $x = 1$