REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION OCCUPATION EXAMEN DU BACCALAUREAT SESSION 2018 Session de contrôle Epreuve: Mathématiques Section: Sciences expérimentales Coefficient de l'épreuve: 3

Le sujet comporte 5 pages. Les pages 4/5 et 5/5 sont à rendre avec la copie.

Exercice 1 (5 points)

L'espace est rapporté à un repère orthonormé direct $(O, \bar{i}, \bar{j}, \bar{k})$.

On considère les points A(1,1,1), B(0,4,0), C(0,0,2) et I(-1,1,-1).

- 1/ a) Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b) Calculer le volume V du tétraèdre ABCI.
- 2/ On désigne par P le plan (ABC).

Montrer qu'une équation cartésienne de P est x+y+2z-4=0.

3/ Soit (S) l'ensemble des points M(x,y,z) de l'espace tel que

$$x^2+y^2+z^2+2x-2y+2z-8=0$$
.

- a) Montrer que (S) est la sphère de centre I est de rayon √11.
- b) Montrer que P∩(S) est un cercle (℃) de rayon √5.
- c) Vérifier que le segment [BC] est un diamètre du cercle (C). En déduire les coordonnées du point H, centre de (C).
- 4/ Soit a un réel et M le point défini par $\overline{AM} = a \overline{AB}$.
 - a) Déterminer à l'aide du réel a, les coordonnées du point M.
 - b) Montrer que $\overrightarrow{BM} \cdot \overrightarrow{CM} = (a-1)(11a+3)$.
 - c) En déduire que la droite (AB) recoupe le cercle (\mathcal{C}) au point E défini par $\overline{AE} = \frac{-3}{11} \overline{AB}$.
 - d) Montrer que le volume $\, v\,$ du tétraèdre AECI est égal à $\frac{3}{11}\, v\,$.

Exercice 2 (4.5 points)

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Dans la figure 1 de l'annexe ci-jointe, (C) et (C') sont deux cercles de même centre O et de rayons respectifs $\sqrt{3}$ et 3.

- I) 1/On considère le point P d'affixe $p = \sqrt{2} + i$.
 - a) Vérifier que le point P appartient à (C).
 - b) Construire le point P.
 - c) On désigne par α un argument du nombre p. Donner l'écriture exponentielle de p.

2/Soit Q le point du cercle (C') tel que $(\overrightarrow{OP}, \overrightarrow{OQ}) \equiv \alpha[2\pi]$. On note q l'affixe du point Q .

- a) Donner une mesure de l'angle orienté (u, OQ).
- b) Ecrire le nombre complexe q sous forme exponentielle.
- c) En déduire que $p^2 = q$ puis que $q = 1 + 2\sqrt{2}$ i.
- II) On considère dans l'ensemble C des nombres complexes, les équations

(E):
$$16z^2 - 8z + 9 = 0$$
 et (E'): $16z^4 - 8z^2 + 9 = 0$.

- 1/a) Montrer que les solutions de l'équation (E) sont les nombres $\frac{q}{4}$ et $\frac{\overline{q}}{4}$.
 - b) En déduire les solutions de l'équation (E').
- 2/ a) Construire dans l'annexe les points images des solutions de l'équation (E').
 - b) Montrer que ces points sont les sommets d'un rectangle.

Exercice 3 (6.5 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)^2 - xe^x$. On désigne par (C_f) sa courbe représentative dans un repère orthogonal (O, \vec{i}, \vec{j}) du plan.

- 1/a) Calculer $\lim_{x\to -\infty} f(x)$ et montrer que $\lim_{x\to -\infty} \frac{f(x)}{x} = -\infty$. Interpréter graphiquement.
 - b) Montrer que $\lim_{x \to +\infty} f(x) = -\infty$ et que $\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$. Interpréter graphiquement.
- 2/ a) Montrer que pour tout réel x, $f'(x) = (x+1)(2-e^x)$.
 - b) Dresser le tableau de variation de f.
- 3/ Dans la figure 2 de l'annexe ci-jointe, on a tracé dans le repère (O, \vec{i}, \vec{j}) , la courbe représentative (Γ) de la fonction g définie sur $\mathbb R$ par $g(x) = e^x$ et la droite Δ d'équation y = x + 1.
 - a) Montrer que la droite Δ est une tangente commune à $\left(\mathsf{C}_\mathsf{f}\right)$ et $\left(\Gamma\right)$ au point d'abscisse 0.
 - b) Justifier que pour tout réel x, $e^{x} (x+1) \ge 0$.
- 4/a) Vérifier que pour tout réel x, $e^x f(x) = (x+1)(e^x x 1)$.
 - b) Vérifier que pour tout réel x, $(x+1)-f(x)=x(e^x-x-1)$.
 - c) Etudier la position relative de (C_f) et (Γ) , puis de (C_f) et Δ .
- 5/ Tracer dans l'annexe, la courbe (C_f) .
- 6/ On désigne par A l'aire en (u .a) de la partie du plan limitée par les courbes (C_f) et (Γ) et les droites d'équations x = -1 et x = 0.

Montrer que
$$A = \frac{1}{e} - \frac{1}{3}$$
.

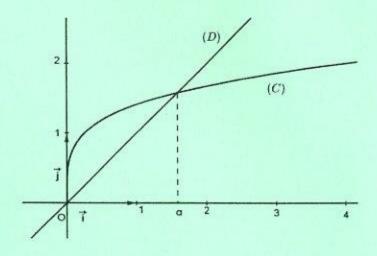
Exercice 4 (4 points)

Dans la figure ci-contre, $\left(O,\vec{i},\vec{j}\right)$ est un repère orthonormé du plan.

(C) est la courbe représentative de la fonction g définie sur $[0, +\infty[$ par

$$g(x) = \sqrt[4]{4x},$$

la droite (D) d'équation y = x coupe la courbe (C) au point O et en un autre point d'abscisse α .



1/ Vérifier que $\alpha = \sqrt[3]{4}$.

2/ On considère la fonction f définie sur $]0,+\infty[$, par $f(x)=\frac{2}{\sqrt{x}}$ et on désigne par (u_n) la suite définie par $\begin{cases} u_0=4,\\ u_{n+1}=f(u_n), \text{ pour tout } n\in\mathbb{N}. \end{cases}$

- a) Classer dans l'ordre croissant les réels u_0 , u_1 , u_2 et u_3 .
- b) Montrer que pour tout $n \in \mathbb{N}$, $u_n > 0$.
- c) Soit $n \in \mathbb{N}$, Montrer que, si $u_{n+1} \le u_n$ alors $u_{n+2} \ge u_{n+1}$.
- d) Montrer que la suite (un) n'est pas monotone.
- 3/ Vérifier que pour tout $x \in]0,+\infty[$, g(x) = f(f(x)).
- 4/ Pour tout $n \in \mathbb{N}$, on pose $v_n = u_{2n+1}$ et $w_n = u_{2n}$.
 - a) Vérifier que pour tout $n \in \mathbb{N}$, $v_{n+1} = g(v_n)$ et $w_{n+1} = g(w_n)$.
 - b) En utilisant la monotonie de la fonction g, montrer par récurrence que pour tout $n \in \mathbb{N}$, $v_n \leq v_{n+1} \leq \alpha \leq w_n \leq w_{n+1}.$
 - c) En déduire que la suite (u_n) converge et déterminer sa limite.

Section: No d'inscription : Série :	Signatures des surveillants
Nom et Prénom :	*********************
Date et lieu de naissance ;	

Épreuve : Mathématiques -Section : Sciences expérimentales -Session de contrôle - 2018

Annexe à rendre avec la copie

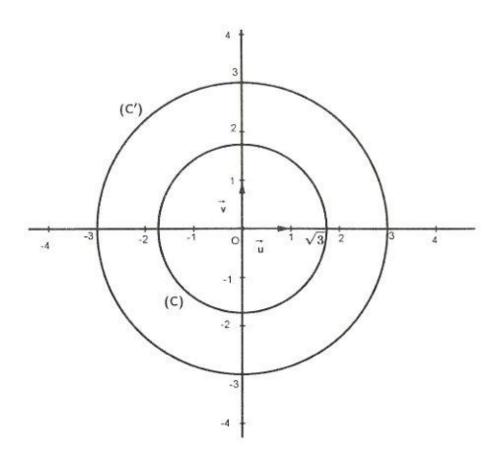


Figure 1

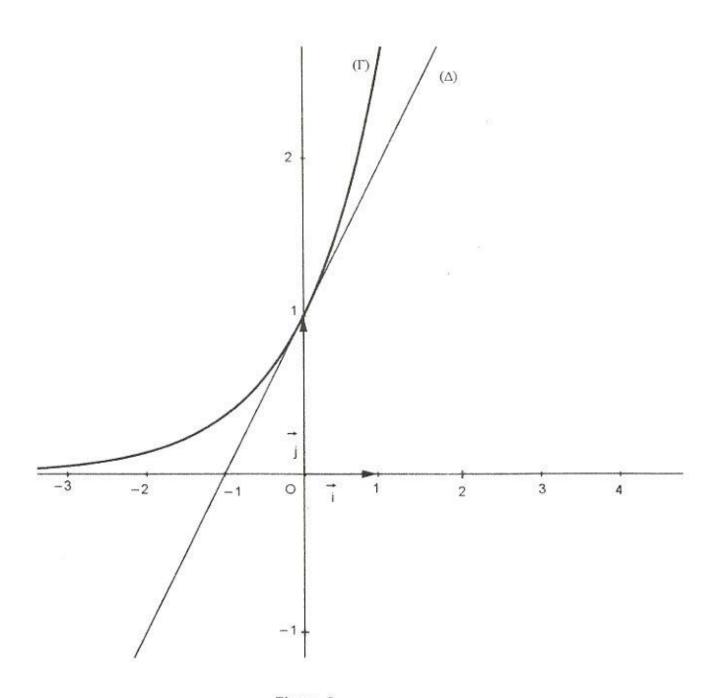


Figure 2