REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION OND Mathématiques Examen de contrôle Epreuve: Mathématiques Economie et Gestion Coefficient de l'épreuve: 2

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

Exercice 1: (4points)

On considère la suite réelle (u_n) définie sur $\mathbb N$ par : $\begin{cases} u_n=1 \\ u_{n+1}=\frac{4u_n}{1+u_n}, \, n \in \mathbb N \end{cases}$

- 1) a) Montrer par récurrence, que pour tout entier naturel n, on a : $1 \le u_n < 3$.
 - b) Vérifier que pour tout entier naturel n, on a : $u_{n-1} u_n = \frac{u_n(3 u_n)}{1 + u_n}$.
 - c) En déduire le sens de variation de la suite (Un) ne N
 - d) Montrer que la suite (U_n)_{neN} est convergente.
- 2) Soit (V_n) la suite définie sur \mathbb{N} par : $V_n = \frac{3 U_n}{U_n}$; pour tout entier naturel n.
 - a) Montrer que $(V_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1}{4}$.
 - b) Vérifier que pour tout entier naturel n, on a : $u_n = \frac{3}{1+V_n}$.
 - c) Déterminer alors la limite de la suite (Un) nen .

Exercice 2: (5points)

On dispose de deux urnes U₁ et U₂ et d'une pièce de monnaie.

L'urne U₁ contient 3 boules blanches et 2 boules rouges.

L'urne U2 contient une boule blanche et 4 boules rouges.

Toutes les boules sont indiscernables au toucher.

La pièce de monnaie est truquée de façon que lorsqu'elle est lancée, la probabilité d'obtenir " face" est égale à $\frac{3}{4}$.

On considère l'épreuve suivante : On lance la pièce de monnaie

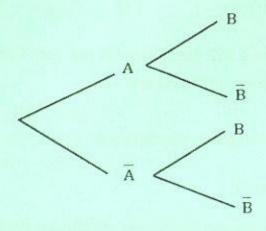
- · Si on obtient "pile», on tire une boule de l'urne U1
- Si on obtient «face», on tire une boule de l'urne U₂.

On désigne par A et B les événements suivants :

A: « Obtenir pile ».

B: « obtenir une boule blanche ».

- 1) a) Calculer P(A).
 - b) Recopier et compléter l'arbre pondéré suivant décrivant la situation.



- 2) a) Montrer que P(B) = $\frac{3}{10}$.
 - b) Quelle est la probabilité d'obtenir" pile», sachant que la boule tirée est blanche ?
- On répète l'épreuve précédente 5 fois de suite, en remettant à chaque fois, la boule tirée dans son urne d'origine.

On note par X la variable aléatoire prenant pour valeurs le nombre d'épreuves donnant une boule blanche.

- a) Calculer la probabilité de l'événement (X= 4).
- b) Calculer l'espérance mathématique et la variance de X.

Exercice 3: (5points)

On donne les matrices
$$A = \begin{pmatrix} 9,9 & 7,5 & 3,75 \\ 1030 & 780 & 385 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 7900 & -75 & -750 \\ -12900 & 123 & 1020 \\ 5000 & -48 & -60 \end{pmatrix}$.

- 1) a) Calculer le déterminant de A. En déduire que A est inversible.
 - b) Calculer A × B.
 - c) En déduire la matrice inverse A-1 de A.

2) Un bijoutier fabrique des bagues de trois types B₁, B₂ et B₃ par l'alliage de l'or pur avec d'autres métaux. Chaque bague fabriquée pèse 5 grammes.
Le tableau suivant indique le pourcentage massique d'or pur et le prix d'une bague pour chaque type.

Type de bague	B ₁	B ₂	B ₃
Pourcentage massique d'or pur	99%	75%	37,5%
Prix d'une bague (en dinars)	1030	780	385

Pendant un mois, le bijoutier a utilisé 312 grammes d'or pur pour fabriquer 100 bagues qu'il les vend avec un total de 64700 dinars.

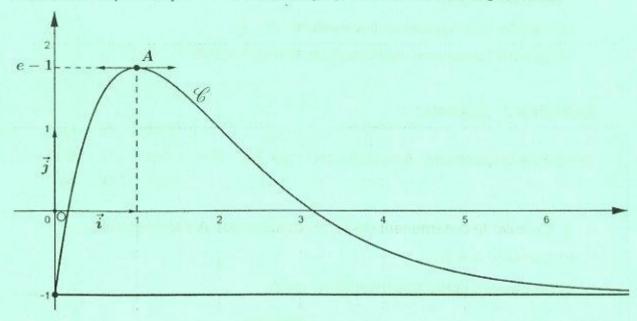
- a) Montrer que la situation se traduit par le système (S): $\begin{cases} 9.9x + 7.5y + 3.75z = 624 \\ 1030x + 780y + 385z = 64700 \\ x + y + z = 100 \end{cases}$
- b) Donner l'écriture matricielle de (S).
- c) Déterminer alors le nombre de bagues fabriquées de chaque type.

Exercice 4: (6 points)

Le plan est muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$.

La courbe \mathcal{E} ci-dessous est celle d'une fonction f définie et dérivable sur $[0, +\infty[$.

- • admet au point A(1; e−1) une tangente parallèle à l'axe des abscisses.
- La droite d'équation y = -1 est une asymptote à \mathscr{C} au voisinage de $+\infty$.



Page 3/4

- A) 1) En utilisant les données et le graphique, donner :
 - a) f(1) et f'(1).
 - b) $\lim_{x\to +\infty} f(x)$.
 - c) Le nombre de solutions dans $[0,+\infty[$ de l'équation f(x)=0.
 - d) Le tableau de variations de la fonction f sur $[0,+\infty[$.
- 2) On admet dans la suite que la fonction f est définie sur $[0,+\infty[$ par : $f(x) = xe^{2-x} 1$
 - a) Montrer que la fonction F définie par : $F(x) = -(x+1)e^{2-x} x$ est une primitive de f sur $[0, +\infty[$.
 - b) Calculer l'aire \mathcal{A} en unités d'aires, de la région du plan délimitée par la courbe \mathcal{C} , l'axe des abscisses et les droites d'équations $x = \frac{1}{2}$ et x = 3.
- B) Une entreprise vend x en centaines de litres de peinture par jour $(0,5 \le x \le 3)$. Le bénéfice réalisé en milliers de dinars est égal à f(x).
- Calculer le bénéfice en dinars réalisé pour la vente de 200 litres.
- Déterminer la quantité du produit en litres à vendre par jour pour réaliser un bénéfice maximal et préciser ce bénéfice à un dinar près.
- 3) L'entreprise vend chaque jour une quantité de peinture qui varie entre 50 et 300 litres. Déterminer alors le bénéfice moyen de l'entreprise à un dinar près.