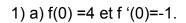
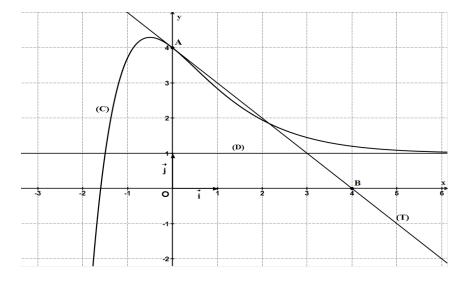
Corrigé de l'épreuve de mathématiques du baccalauréat Session de contrôle 2017 Section : Economie et Gestion

Exercice 1



b) (T):
$$y = -x+4$$
.

$$c) \lim_{x \to +\infty} f(x) = 1.$$



2)a)
$$f'(x) = ae^{-x} - (ax + b)e^{-x} = (-ax + a - b)e^{-x}$$
.

b)
$$\begin{cases} f(0) = 4 \\ f'(0) = -1 \end{cases}$$
 équivaut à
$$\begin{cases} 1+b=4 \\ a-b=-1 \end{cases}$$
 équivaut à
$$\begin{cases} b=3 \\ a=2 \end{cases}$$
 équivaut à
$$f(x) = 1 + (2x+3)e^{-x}, \text{ pour tout réel } x.$$

c) La fonction F est dérivable sur IR et F'(x)=1 - $2e^{-x} + (2x + 5)e^{-x} = f(x)$. Alors F est une primitive de f sur IR.

d)
$$A = \int_{1}^{2} f(x)dx = F(2) - F(1) = 1 - 9e^{-2} + 7e^{-1}$$
.

Exercice 2

1) a) Nombre d'arêtes sortantes et le nombre d'arêtes rentrantes :

	Α	В	С	D	Е
d⁺	2	2	1	2	1
d⁻	2	1	1	2	2

b) d⁺\neq d⁻ pour les sommets B et E donc G n'admet pas de cycle eulérien.

c) Pour les sommets A, C et D : $d^+=d^-$.

Pour le sommet B : $d^+=d^-+1$.

Pour le sommet E on a d⁺= d⁻-1.

Donc G admet une chaine eulérienne.

d) Exemple de chaine eulérienne : B-D-A-C-D-E.

2)
$$M^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$
. If ya 2 chaines de longueur 2 reliant le sommet B à E.

Exercice 3

1) On trouve
$$C = \begin{pmatrix} 4 & -6 & 14 \\ -2 & 4 & -9 \\ 2 & -4 & 10 \end{pmatrix}$$
.

- 2) a) $det(A) = \frac{1}{4} \neq 0$. Alors la matrice A est inversible.
 - b) II suffit de vérifier que $AxC = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- 3) $(-2) + 6x1 + 4x2 8 = 4 \neq 0$, ainsi le triplet (-2, 1, 2) ne vérifie pas la deuxième équation du système, par la suite il n'est pas une solution de (S).
 - a) (a, b, c)est une solutiondu système (S) équivaut à

$$\begin{cases} 2a + 2b - c = -4 \\ a + 6b + 4c = 8 \\ 2b + 2c = 6 \end{cases}$$
équivaut à
$$\begin{cases} a + b - \frac{1}{2}c = -2 \\ \frac{1}{2}a + 3b + 2c = 4 \end{cases}$$
équivaut à
$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}.$$

c)
$$A \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}$$
 équivaut à $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = A^{-1} \cdot \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}$ On trouve $a=10$ $b=-7$ $c=10$

Exercice 4

1)
$$U_1 = \frac{1}{2}(U_0 + e) = \frac{3}{2}e$$
 et $U_2 = \frac{1}{2}(U_1 + e) = \frac{5}{4}e$.

2) a)
$$U_0 = 2e > e$$
.

Soit $n \in \mathbb{N}$. Supposons que $U_n \ge e$ et montrons que $U_{n+1} \ge e$.

En effet si $U_n \ge e$ alors $U_n + e \ge 2e$ d'où $\frac{1}{2}(U_n + e) \ge e$ c'est-à-dire $U_{n+1} \ge e$.

Conclusion: pour tout $n \in \mathbb{N}, \ U_n > e$.

b) Soit
$$n \in \mathbb{N}$$
. $U_{n+1} - U_n = \frac{1}{2} (U_n + e) - U_n = \frac{1}{2} (e - U_n) < 0$ car $e < U_n$.

- c) La suite \emph{U} est décroissante et minorée par e alors elle est convergente.
- 3) Soit la suite V est définie sur IN par $V_n = U_n e$.

a) Soit
$$n \in \mathbb{N}$$
, $V_{n+1} = U_{n+1} - e = \frac{1}{2}(U_n + e) - e = \frac{1}{2}(U_n + e) - \frac{2}{2}e = \frac{1}{2}(U_n + e - 2e) = \frac{1}{2}(U_n - e) = \frac{1}{2}V_n$.

Alors V est une suite géomètrique de raison $\frac{1}{2}$.

b)
$$V_0=U_0-e=2e-e=e$$
 d'où pour tout $n\in\mathbb{N}$, $V_n=e\left(\frac{1}{2}\right)^n$.

De l'égalité $V_n=U_n-e$, on déduit que $U_n=e+e\bigg(\frac{1}{2}\bigg)^n$.

c)
$$\frac{1}{2} \in]-1,1[$$
 alors $\lim_{n \to +\infty} e \left(\frac{1}{2}\right)^n = 0$ par la suite $\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} e + e \left(\frac{1}{2}\right)^n = e$.