CORRIGE DE L'EXAMEN DU BACCALAUREAT

Session: PRINCIPALE 2016 - Matière: SCIENCES PHYSIQUES - Section: SPORT

CHIMIE

L'exercice 1 de Chimie							
	Corrigé						
		Composé	(A)	(B)	(C)		
		Formule brute	CH ₄ O		C ₃ H ₆ O ₂		
1)	a-	Formule semi-développée		CH ₃ — C — OH			
		Fonction chimique	alcool		ester		
	b-	méthanol acide éthanoïque					
	a-	Estérification					
2)	b-	Lente, limitée, athermique			(2 caractères)		
	C-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	a-	Saponification					
3)	b-	$(CH_3 - C - O^-; Na^+)$ O					

	L'exercice 2 de Chimie						
	Corrigé						
1)		Amine	(A_1)	(A_2)	(A ₃)		
		Nom	N- méthyléthanamine		propan -2- amine		
		F. semi-dév.		CH ₃ -CH ₂ -CH ₂ -NH ₂			

CORRIGE DE L'EXAMEN DU BACCALAUREAT

Session: PRINCIPALE 2016 - Matière: SCIENCES PHYSIQUES - Section: SPORT

	a-	Amine secondaire
2)	b-	CH_3 -NH-CH ₂ -CH ₃ + HO -N =O \rightarrow H ₂ O + CH_3 N = O
2)	a-	$\text{CH}_3\text{-CH}_2\text{-CH}_2\text{-NH}_2 + \text{HO} \text{-N} = \text{O} \rightarrow \text{N}_2 + \text{H}_2\text{O} + \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-OH}$
3)	b-	propan -1- ol alcool primaire
4)		CH ₃ -C-NH-CH-CH ₃

PHYSIQUE

	L'exercice 1 de Physique						
	Corrigé						
	a-	Dans un référentiel Galiléen, la variation de l'énergie cinétique d'un système matériel déformable ou indéformable, entre deux instants t ₁ et t ₂ quelconques, est égale à la somme algébrique des travaux de toutes les forces extérieures et intérieures au système entre ces deux instants.					
I- 1)	b-	$\Delta E_{C} = \sum_{A \to B} \mathbf{w} (\vec{F}_{ext} + \vec{F}_{int}) \qquad \Delta E_{C} = \ \vec{F}\ \ \vec{AB}\ = \ \vec{F}\ d_{1} = \frac{1}{2} M V_{B}^{2}$ $\ \vec{V}_{B}\ = \sqrt{\frac{2\ \vec{F}\ d_{1}}{M}}$					
	c-	$A.N: \left\ \overrightarrow{V}_{B} \right\ = 20 \text{ m.s}^{-1}$					
I-	a-	$E_1 = E_{C1}(B) + E_{P1}(B)$ $E_1 = \frac{1}{2}MV_B^2 + M. \ \vec{g}\ .h$					
2)	b-	$A.N : E_1 = 540000 J$					
II- 1) $E_2 = E_{C2}(C) + E_{P2}(C)$ $E_2 = E_{C2}(C) = \frac{1}{2}MV_C^2$		$E_2 = E_{C2}(C) + E_{P2}(C)$ $E_2 = E_{C2}(C) = \frac{1}{2}MV_c^2$ A.N: $E_2 = 540000 \text{ J}$					
II- 2 $E_1 = E_2$		$E_1 = E_2$ Entre B et C le système {Automobile, terre} est conservatif					
	a-	$\Delta E = E'_2 - E_1 = \frac{1}{2}MV_c'^2 - E_1$ A.N: $\Delta E = 375000-540000 = -165000 J$					
II- 3)	b-	$\Delta E = \underset{B \to C}{\mathbf{W}}(\overrightarrow{f}) = - \ \overrightarrow{f} \ d_2 \qquad \ \overrightarrow{f} \ = - \frac{\Delta E}{d_2}$					
		$\left\ \vec{\mathbf{f}} \right\ = 200 \text{ N}$					

CORRIGE DE L'EXAMEN DU BACCALAUREAT

Session: PRINCIPALE 2016 - Matière: SCIENCES PHYSIQUES - Section: SPORT

L'exercice 2 de Physique								
		Corrigé						
1)	a-	${}^{A}_{Z}Np \rightarrow {}^{239}_{94}Pu + {}^{0}_{-1}e$ La loi de conservation du nombre de masse : A = 239 La loi de conservation du nombre de charge : Z = 94-1 = 93						
	b-	Un neutron $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ se transforme en un proton $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ avec émission d'un électron $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ e						
	a-	La période radioactive ou demi-vie d'une substance radioactive est la durée au bout de laquelle le nombre de noyaux radioactifs initialement présents dans un échantillon de cette substance diminue de moitié.						
2)		Instant t	t_0	t_1	t_2	t ₃		
	b-	Masse de Neptunium restante à l'instant t	m ₀ =12g	m ₁ = 6 g	m ₂ = 3 g	m ₃ = 1,5 g		
3)	a-	$^{239}_{92}$ U \rightarrow $^{239}_{93}$ Np + $^{A'}_{z'}$ X La loi de conservation du nombre de masse : A' = 0 La loi de conservation du nombre de charge : Z' = 92 - 93 = -1 donc X est un électron donc radioactivité β -						
	b-	Réaction nucléaire spontanée						
	a-	fission, provoquée						
4)	b-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

La correction a été élaborée par Hedi KHALED