REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION EXAMEN DU BACCALAUREAT SESSION DE JUIN 2013 Epreuve : SCIENCES PHYSIQUES Durée : 2 H Coefficient : 1 Section : Sport SESSION DE CONTRÔLE

Le sujet comporte 4 pages numérotées de 1/4 à 4/4

CHIMIE

Exercice1 (04 points)

Lors d'une séance de travaux pratiques, les élèves se proposent d'identifier les classes de deux alcools (A₁) et (A₂) de même formule brute C₃H₈O.

- 1- Au cours d'une première expérience, ils réalisent l'oxydation ménagée de l'alcool (A₁) par le permanganate de potassium (KMnO₄) en milieu acide. Le produit obtenu est un composé organique (B) qui donne un précipité jaune avec la 2,4-dinitrophénylhydrazine (2,4-D.N.P.H), mais sans action sur le réactif de Schiff.
- a- Indiquer, en justifiant la réponse, si le composé (B) renferme un groupe carbonyle.
- b- Préciser, en justifiant la réponse, la fonction chimique du composé (B).
- Déduire la classe de l'alcool (A₁) et écrire sa formule semi-développée ainsi que son nom.
- d- Ecrire la formule semi-développée du composé (B).
- 2- Dans une deuxième expérience, l'oxydation ménagée de l'alcool (A2) donne un composé (C) qui rosit le réactif de Schiff et qui, à son tour, subit une oxydation pour donner un composé (D) qui rougit le papier pH.
- a- Préciser les fonctions chimiques des composés (C) et (D).
- b- Déduire la classe de l'alcool (A₂) et écrire sa formule semi-développée ainsi que son nom.
- c- Ecrire les formules semi-développées des composés (C) et (D).

Exercice2 (04 points)

On dispose de trois amines (A1), (A2) et (A3) de formules semi-développées

respectivement : CH_3 -NH-CH₂-CH₃, CH_3 - N - CH₃ et C_nH_{2n+1} -NH₂.

1- Sur la copie à remettre, reproduire et compléter le tableau suivant:

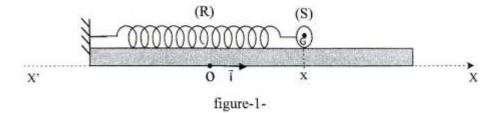
Amine	Nom de l'amine	Classe	
(A ₁)			
(A ₂)			

- 2- La masse molaire de l'amine A3 est M = 31 g.mol⁻¹.
 - a- Montrer que la formule semi-développée de l'amine (A₃) est CH₃-NH₂.

On donne: - La masse molaire de l'hydrogène: M(H) = 1 g.mol⁻¹

- La masse molaire du carbone : M(C) = 12 g.mol⁻¹
- La masse molaire de l'azote : M(N) = 14 g.mol⁻¹
- b- Donner le nom ainsi que la classe de l'amine (A₃).
- 3- L'une des trois amines précitées, réagit avec l'acide nitreux (HNO₂) pour donner, entre autres produits, un alcool (B).
 - a- Identifier, par sa formule semi-développée, l'amine ayant réagit avec l'acide nitreux. Justifier la réponse.
 - b- Ecrire la formule semi-développée de l'alcool (B) formé et donner son nom.
- 4- L'amine (A₁) réagit avec le chlorure d'acyle $CH_3-C=O$ pour donner le chlorure

d'hydrogène (HCℓ) et un amide (C).


Ecrire, en formules semi-développées, l'équation de cette réaction.

PHYSIQUE

Exercice1 (07 points)

Un pendule élastique est constitué d'un solide (S) supposé ponctuel de masse m = 0,2 kg attaché à l'une des extrémités d'un ressort élastique (R) à spire non jointives, de masse négligeable devant m et de raideur k = 20 N.m⁻¹. L'autre extrémité du ressort est fixe.

Le solide (S) peut osciller horizontalement sur une table à coussin d'air sans frottements. Les oscillations du solide (S) s'effectuent suivant la direction d'un axe horizontal (x'x). La position du centre d'inertie G du solide (S) est repérée par son abscisse x(t) dans un repère (o, \vec{i}) ; où o correspond à la position de G lorsque le solide (S) est au repos, et \vec{i} est un vecteur unitaire porté par l'axe (x'x) comme l'indique la figure-1-.

On écarte le solide (S) de sa position d'équilibre d'une distance d = 0,06 m dans le sens des élongations négatives, et on le lâche sans vitesse initiale à l'instant t₀ pris comme origine du temps.

Un dispositif approprié permet de suivre les variations de l'élongation x de G au cours du temps. Cette élongation vérifie, à chaque instant, la loi horaire $x(t) = X_m \sin(\frac{2\pi}{T_0}t + \phi_0)$, où

 X_m et T_0 représentent respectivement l'élongation maximale et la période propre des oscillations de G et ϕ_0 représente la phase initiale du mouvement de G. x(t) s'exprime en mètre.

1- a- Montrer que l'équation différentielle qui régit le mouvement du centre d'inertie G

s'écrit:
$$m\frac{d^2x(t)}{dt^2} + kx(t) = 0$$
.

b- Préciser la nature du mouvement de G.

2- a- Indiquer, en justifiant la réponse, laquelle des deux courbes (a) et (b) de la figure-2-correspond au mouvement de G.

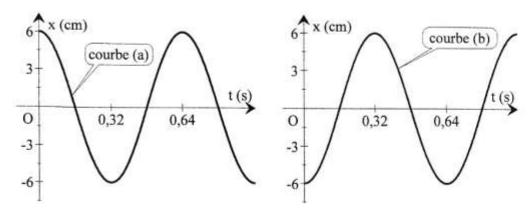


figure-2-

b- Déterminer à partir de la courbe choisie :

- l'élongation X_m
- la période propre T₀
- la phase initiale φ₀.

3- Sachant que la vitesse instantanée du centre d'inertie G du solide (S) s'écrit sous la forme : $v(t) = V_m \sin(\omega_0 t + \phi_{\sigma v})$. Déterminer les valeurs de ω_0 , V_m et $\phi_{\theta v}$.

4- Donner l'expression de l'énergie mécanique E du système (solide (S), ressort (R), terre) à un instant t, en fonction de k, m, x et v sachant que l'énergie potentielle de pesanteur de ce système est supposée nulle à tout instant. Calculer sa valeur à l'instant t₀ = 0 s.

Exercice2 (05 points)

Le noyau d'Or $^{\mathbf{A}}_{79}$ Au est radioactif β .

- 1- a- Ecrire l'équation de la réaction de désintégration sachant qu'elle conduit à la formation d'un noyau $^{198}_{~Z}X$.
 - b- En précisant les lois utilisées, déterminer les valeurs de Z et A.
 - c- Parmi la liste, consignée dans le tableau suivant, identifier le noyau $^{198}_{~\bf Z}{f X}$:

Noyau	77 Ir	78Pt	80 ^{Hg}	81 ^{Tl}	82 Pb
	1.1.	7.0	80 0	81	82

- 2- a- Calculer, en MeV puis en Joule, l'énergie libérée par la désintégration d'un noyau ^A/₇₉Au.
 - b- Préciser l'origine de cette énergie.

On donne :

- masse d'un noyau d'Or : m (^A₇₉Au) = 197,96821 u
- masse du noyau X : m (¹⁹⁸_ZX) = 197,96674 u
- masse d'un électron : m $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ = 0,00055 u
- Unité de masse atomique: u = 931,5 MeV.c⁻²
- $1 \text{ MeV} = 1.6.10^{-13} \text{ J}$