REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION	EXAMEN DU BACCALAUREAT JUIN 2012	
	Corrigé de l'épreuve Informatique	
Sections : Mathématiques + Sciences expérimentales + Sciences techniques		Session principale

Partie I: 6 points

Exercice $n^{\circ}1$: (2 points = 8 * 0,25)

Donner les valeurs des variables indiquées :

Instructions	Valeurs		
X ← Tronc (11.8)	X= 11		
Y ← Arrondi (11.8)	Y=12		
Valour (''120 25'' N. E)	N= 138.25	ou bien	N= 0
Valeur (''138.25'',N, E)	E= 0		E= 4
Convch (138.25,Ch)	Ch="138.25"		
Ch1←''information''	Ch1 - Ilinian II		
Efface (ch1,3,6)	Ch1= "inion "		
Ch1←''information''	Ch1= "information"		
Ch 2← sous_chaine(ch1,3,6)	Ch2= "format"		

Exercice 2: (4 points)

1°) Algorithme de la fonction Fact :	2°)Algorithme de la fonction somme :
0) Def FN Fact (n : entier) : entier	0) Def FN Somme (n : entier) : réel
1) F← 1	1) S ← 1
Pour i de 2 à n faire	Pour i de 1 à (n div 2) faire
F ← F * i	S← S+(1/FN Fact(2*i +1))
Fin Pour	Fin Pour
2) Fact ← F	2) Somme←S
3) Fin fact	3) Fin Somme

N. B.: Le type de la fonction Fact peut être: Entier Long ou Réel.

Partie II: 14 points

1/ Analyse du programme principal

```
Résultat = Proc Affiche (T,M,n)
(T,M) = Proc Trier(T,M,n)
(T,M,n) = Proc Saisie(n)
Proc Lecture(T,M,n)
```

T.D.N.T

Туре		
Tab1 = tableau de 20 chaines		
Tab2 = tableau de 20 réels		

T.D.O.G

Objet	Type /nature	Rôle
T	Tab1	Tableau contenant des nombre complexes
M	Tab2	Tableau des modules des nombres complexes
N	Octet	Nombres des éléments du tableau T.
Affiche	Procédure	Affichage de chaque suite sur une ligne à part
Trier	Procédure	Trier les éléments de T et M selon l'ordre décroissant
Saisie	Procédure	de leurs modules
Lecture	Procédure	Saisie de n
		Remplissage de T et M

2/Analyse des modules

Analyse de la procédure saisie :

```
Def Proc saisie (Var n : octet)
Résultat = n
n = [ ] Répéter
           n = donnée ("Entrer le nombre des éléments du tableau : ")
       Jusqu'à (n Dans [2..20])
Fin saisie
Analyse de la procédure lecture :
Def Proc Lecture (Var T : tab1 ; Var M : Tab2 ; n : octet)
Résultat = (T,M)
(T,M) = []Pour i de 1 à N faire
                Proc Saisie_partie(a)
                Proc Saisie partie(b)
                Convch (a,ch1)
                Convch (b,ch2)
                T[i]← Ch1 + "+" + Ch2 + "i"
                M[i] ← racinecarrée (carré(a)+carré(b))
             FinPour
```

Fin Lecture

T.D.O.L

Objet	Туре	Rôle
i	Octet	Compteur
a	Entier	Désigne la partie réelle du nombre complexe
b	Entier	T[i]
Ch1	Chaine	Désigne la partie imaginaire du nombre
Ch2	Chaine	complexe T[i]
Saisie_partie	procédure	Conversion de a en chaine
	-	Conversion de b en chaine
		Saisie d'un entier positif

Analyse de la procédure saisie partie :

```
Def Proc saisie_partie (Var k : entier)

Résultat = k

k = [ ] Répéter

k = donnée ("Entrer un entier naturel non nul :")

Jusqu'à (k>0)

Fin saisie_partie
```

Analyse de la procédure Trier :

```
Def Proc Trier (Var T: tab1; Var M: tab2; n: octet)

Résultat = (T, M)

(T,M) = [ ] Pour i de 1 à (n-1) faire

ind← FN Indmax(M,n,i)

Aux1← T[ind]

T[ind]← T[i]

T[i] ← Aux1

Aux2 ← M[ind]

M[ind]← M[i]

M[i] ← Aux2

Finpour
```

Fin Trier

T.D.O.L

Objet	Туре	Rôle
Indmax	Fonction	Rechercher l'indice du maximum dans la partie i n
Ind	Octet	du tableau M Variable intermédiaire
Aux1	Chaine	Variable intermédiaire
Aux2	Réel	Variable intermédiaire

Analyse de la fonction indmax

```
Def FN Indmax (M: tab2; n, i: octet): octet

Résultat = indmax←ind

Ind = [ind ←i] Pour j de (i+1) à n Faire

Si M[j] > M[ind] Alors ind←j

FinSi
```

T.D.O.L

Fin indmax

Objet	Туре	Rôle
J		Compteur
	Octet	
ind		Indice de la valeur
	Octet	maximale

Analyse de la procédure affiche

```
Def Proc Affiche (T: tab1; M: tab2; n: octet)

Résultat = [Ecrire (T[1], " ")]

Pour i de 2 à N faire

Si M[i] <> M[i-1] Alors Retourligne

FinSi

Ecrire (T[i], " ")

FinPour

Fin Affiche
```

N.B.: L'instruction retourligne peut être remplacée par l'instruction Ecrire().

T.D.O.L

Objet	Туре	Rôle
i	octet	compteur