الشبكة التربوية التونسية www.edunet.tn

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

SESSION PRINCIPALE

EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION: SPORT

EPREUVE: MATHEMATIQUES

DURÉE: 2 heures

COEFFICIENT: 1

EXERCICE 1: (6 points)

Un sac contient dix boules indiscernables au toucher : 2 boules rouges, 3 boules vertes et 5 boules jaunes.

On tire simultanément et au hasard trois boules du sac.

1) Calculer la probabilité de chacun des événements A et B suivants :

A: « obtenir trois boules vertes»

B: « obtenir trois boules de couleurs différentes deux à deux »

- On désigne par X l'aléa numérique qui à chaque tirage associe le nombre de boules vertes obtenues parmi les trois boules tirées.
 - a) Quelles sont les valeurs possibles prises par X ?
 - b) Déterminer la loi de probabilité de X.
 - c) Calculer l'espérance mathématique de X.

EXERCICE 2: (6 points)

On considère la suite (un) définie sur IN par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{4}u_n - \frac{3}{4}, & \text{pour tout } n \in IN \end{cases}$$

- 1) Calculer u₁ et u₂.
- 2) a) Montrer par récurrence que pour tout entier naturel n, $u_n \ge -1$.
 - b) Montrer que pour tout entier naturel n, $u_{n+1} u_n = -\frac{3}{4}(u_n + 1)$.
 - c) Vérifier alors, que la suite (un) est décroissante.
 - d) En déduire que la suite (un) est convergente.
- 3) Soit la suite (v_n) définie sur IN par v_n = u_n + 1
 - a) Montrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{4}$
 - b) Quelle est alors la limite de la suite (v_n) ?
 - c) En déduire que $\lim_{n\to+\infty} u_n = -1$

الشبكة التربوية التونسية www.edunet.tn

PROBLEME: (8 points)

Soit f la fonction définie sur IR par $f(x) = e^{2x-1}$. On désigne par (\mathscr{C}) la courbe représentative de f dans un repère orthonormé $\left(0,\ \vec{i},\ \vec{j}\right)$ du plan.

- a) Calculer lim f(x). Interpréter graphiquement le résultat obtenu.
 - b) Calculer $\lim_{x \to +\infty} f(x)$.
 - c) Vérifier que pour tout réel x non nul, $\frac{f(x)}{x} = \frac{e^x}{x}e^{x-1}$.
 - d) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat obtenu.
- 2) Dresser le tableau de variation de f.
- 3) a) Ecrire une équation cartésienne de la tangente T à la courbe (\mathscr{C}) au point A($\frac{1}{2}$, 1).
 - b) Construire T et (%).
- 4) Soit le point B($\frac{1}{2}$, 0) dans le repère(O, \vec{i} , \vec{j}).
 - a) Calculer l'aire du triangle OAB.
 - b) Montrer que $\int_{0}^{\frac{1}{2}} e^{2x-1} dx = \frac{e-1}{2e}$.
 - c) En déduire l'aire \mathscr{A} de la partie du plan limitée par la courbe (\mathscr{C}), la droite T et les droites d'équations respectives x = 0 et $x = \frac{1}{2}$.